Genome Evolution and the Emergence of Fruiting Body Development in Myxococcus xanthus

نویسندگان

  • Barry Goldman
  • Swapna Bhat
  • Lawrence J. Shimkets
چکیده

BACKGROUND Lateral gene transfer (LGT) is thought to promote speciation in bacteria, though well-defined examples have not been put forward. METHODOLOGY/PRINCIPLE FINDINGS We examined the evolutionary history of the genes essential for a trait that defines a phylogenetic order, namely fruiting body development of the Myxococcales. Seventy-eight genes that are essential for Myxococcus xanthus development were examined for LGT. About 73% of the genes exhibit a phylogeny similar to that of the 16S rDNA gene and a codon bias consistent with other M. xanthus genes suggesting vertical transmission. About 22% have an altered codon bias and/or phylogeny suggestive of LGT. The remaining 5% are unique. Genes encoding signal production and sensory transduction were more likely to be transmitted vertically with clear examples of duplication and divergence into multigene families. Genes encoding metabolic enzymes were frequently acquired by LGT. Myxobacteria exhibit aerobic respiration unlike most of the delta Proteobacteria. M. xanthus contains a unique electron transport pathway shaped by LGT of genes for succinate dehydrogenase and three cytochrome oxidase complexes. CONCLUSIONS/SIGNIFICANCE Fruiting body development depends on genes acquired by LGT, particularly those involved in polysaccharide production. We suggest that aerobic growth fostered innovation necessary for development by allowing myxobacteria access to a different gene pool from anaerobic members of the delta Proteobacteria. Habitat destruction and loss of species diversity could restrict the evolution of new bacterial groups by limiting the size of the prospective gene pool.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adenylate energy charge during fruiting body formation by Myxococcus xanthus.

The adenylate energy charge of developing Myxococcus xanthus cells was measured. The energy charge of vegetative cells (0.81) does not change significantly during the course of fruiting body formation. Furthermore, myxospores, which are resistant, resting cells present in the fruiting body, have a relatively high energy charge (0.73).

متن کامل

Isoprenoids are essential for fruiting body formation in Myxococcus xanthus.

It was recently shown that Myxococcus xanthus harbors an alternative and reversible biosynthetic pathway to isovaleryl coenzyme A (CoA) branching from 3-hydroxy-3-methylglutaryl-CoA. Analyses of various mutants in these pathways for fatty acid profiles and fruiting body formation revealed for the first time the importance of isoprenoids for myxobacterial development.

متن کامل

Identification of enhancer binding proteins important for Myxococcus xanthus development.

Enhancer binding proteins (EBPs) control the temporal expression of fruiting body development-associated genes in Myxococcus xanthus. Eleven previously uncharacterized EBP genes were inactivated. Six EBP gene mutations produced minor but reproducible defects in fruiting body development. One EBP gene mutation that affected A-motility produced strong developmental defects.

متن کامل

Straight-chain fatty acids are dispensable in the myxobacterium Myxococcus xanthus for vegetative growth and fruiting body formation.

Inactivation of the MXAN_0853 gene blocked the production in Myxococcus xanthus of straight-chain fatty acids which otherwise represent 30% of total fatty acids. Despite this drastic change in the fatty acid profile, no change in phenotype could be observed, which contrasts with previous interpretations of the role of straight-chain fatty acids in the organism's development.

متن کامل

SigF, a new sigma factor required for a motility system of Myxococcus xanthus.

A new sigma factor, SigF, was identified from the social and developmental bacterium Myxococcus xanthus. SigF is required for fruiting body formation during development as well as social motility during vegetative growth. Analysis of gene expression indicates that it is possible that the sigF gene is involved in regulation of an unidentified gene for social motility.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2007